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We solved the mode-coupling equations for the Kob-Andersen binary mixture using structure factors calcu-
lated from Brownian dynamics simulations of the same system. We found, as was previously observed, that the
mode-coupling temperature Tc inferred from simulations is about two times greater than that predicted by the
theory. However, we find that many time-dependent quantities agree reasonably well with the predictions of the
mode-coupling theory if they are compared at the same reduced temperature �= �T−Tc� /Tc, and if � is not too
small. Specifically, the simulation results for the incoherent intermediate scattering function, the mean square
displacement, the relaxation time, and the self-diffusion coefficient agree reasonably well with the predictions
of the mode-coupling theory. We find that there are substantial differences for the non-Gaussian parameter. At
small reduced temperatures the probabilities of the logarithm of single particle displacements demonstrate that
there is hopping-like motion present in the simulations, and this motion is not predicted by the mode-coupling
theory. The wave-vector-dependent relaxation time is shown to be qualitatively different from the predictions
of the mode-coupling theory for temperatures where hopping-like motion is present.
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I. INTRODUCTION

The mode-coupling theory �1,2� has been used exten-
sively to describe the slow relaxation observed in super-
cooled liquids close to the glass transition. The qualitative
predictions of the theory have been compared to experiments
�2,3� and simulations �4–7�. However, until recently, quanti-
tative comparisons which include wave-vector-dependence
and use exact �i.e., obtained from simulations� static infor-
mation have been rare �8–10�.

Nauroth and Kob �8� compared the nonergodicity param-
eters predicted by the mode-coupling theory to Newtonian
dynamics simulations of a binary Lennard-Jones mixture.
They used the structure factors determined from the simula-
tions as the input to the mode-coupling theory, and found
that the transition temperature predicted by the theory was
approximately twice higher than the transition temperature
inferred from simulations. However, the nonergodicity pa-
rameters predicted by the theory agreed reasonably well with
the ones determined from simulations. In a later work, Kob,
Nauroth, and Sciortino �9� quantitatively compared the shape
of the intermediate scattering functions predicted by the
mode-coupling theory to results of Newtonian dynamics
simulations. Since the transition temperature predicted by the
theory is greater than that inferred from simulations, the in-
termediate scattering functions at the same temperature �and
close to the transition temperature� are vastly different.
Therefore, the authors compared scattering functions pre-
dicted by the theory at a higher temperature to scattering
functions obtained from simulations at a lower temperature.
The two corresponding temperatures were determined by the
requirement that the relaxation time be the same for one
wave vector around the first peak in the partial structure fac-
tor for the larger particles. Once the two corresponding tem-
peratures were fixed, the authors showed that for a few wave
vectors the shape of the incoherent intermediate scattering

function was well described by the mode-coupling theory.
Also, Foffi et al. �10� compared simulation results to the
mode-coupling theory for mixtures of hard spheres. They
found that, if the time scale is rescaled, the mode-coupling
theory accurately predicts the shape of the intermediate scat-
tering functions in the � relaxation region.

Recently, the mode-coupling theory has been compared to
molecular and Brownian dynamics simulations of polydis-
perse spheres with a strong repulsive core by Voigtmann,
Puertes, and Fuchs �11�. They used the Percus-Yevick theory
to determine the structure factors for the mode-coupling
theory calculations. For the comparison of the theory with
simulation, they adjusted the packing fraction and allowed a
“dynamical” length scale to vary slightly. They found that
after these adjustments the intermediate scattering functions
and the mean square displacement predicted by the mode-
coupling theory agreed well with the simulation results.

The goal of the work presented here is to compare the
predictions of the mode-coupling theory to the results of
Brownian dynamics simulations using the smallest possible
number of adjustable parameters. In other words, we would
like to test the predictive power of the mode-coupling theory
rather than demonstrate that by making a number of param-
eters adjustable, we can reproduce the simulation results very
accurately. In view of the difference between the mode-
coupling transition temperature predicted by the theory and
inferred from simulations, a minimalistic approach is to com-
pare theoretical predictions and results of the simulations at
the same reduced temperature �= �T−Tc� /Tc. Briefly, the re-
sult of our comparison is that many time-dependent quanti-
ties predicted by the theory agree reasonably well with re-
sults of the simulations if � is not too small. However, there
is significant disagreement between the theoretical predic-
tions and the simulation results for the non-Gaussian param-
eter for all but the highest reduced temperatures. Finally, at
low reduced temperatures there is a hopping-like motion
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present in the simulations which is not predicted by the
mode-coupling theory.

One of the reasons for testing the mode-coupling theory
against Brownian dynamics simulations is that the approxi-
mations involved in this theory applied to Brownian systems
are somewhat less severe. The first approximation of the
theory, projecting stress fluctuations onto the subspace of the
density products �1�, is exact for Brownian systems. How-
ever, the main and the most drastic approximation of the
mode-coupling theory, the self-consistent factorization ap-
proximation, has to still be used. The present study shows
explicitly that it is the factorization approximation that is
responsible for the failure of the mode-coupling theory for
low reduced temperatures.

The paper is organized as follows. In Sec. II we briefly
describe the Brownian dynamics simulations. In Sec. III we
describe the mode-coupling equations that are appropriate
for a binary mixture evolving with Brownian dynamics, and
briefly present the mode-coupling calculation �the method is
described in detail in the Appendix�. In Sec. IV we describe
the method used to find the transition temperature from the
mode-coupling theory, and briefly discuss the nonergodicity
parameters. We compare the intermediate scattering func-
tions in Sec. V and the mean square displacement in Sec. VI.
We compare the non-Gaussian parameter in Sec. VII, and the
probability distribution of the logarithm of single particle
displacements in Sec. VIII. We discuss the results in Sec. IX.

II. BROWNIAN DYNAMICS SIMULATIONS

We simulated a system consisting of NA=800 particles of
type A and NB=200 particles of type B that was first consid-
ered by Kob and Andersen �5�. The interaction potential is
V���r�=4�������� /r�12− ���� /r�6�, where � ,�� �A ,B�, �AA

=1.0, �AA=1.0, �AB=1.5, �AB=0.8, �BB=0.5, and �BB=0.88.
The simulations are performed with the interaction potential
cut at 2.5���, and the box length of the cubic simulation cell
is 9.4�AA. Periodic boundary conditions were used.

We performed Brownian dynamics simulations. The equa-
tion of motion for the position of the ith particle of type
� ,r�i

�, is

r�̇i
� =

1

�0
F� i

� + �� i�t� , �1�

where the friction coefficient of an isolated particle �0=1.0

and F� i
� is the force acting on the ith particle of type �,

F� i
� = − �� i

��
j�i

�
�=1

2

V����r�i
� − r� j

��� �2�

with �� i
� being the gradient operator with respect to r�i

�. In Eq.
�1� the random noise �� i satisfies the fluctuation-dissipation
theorem

	�� i�t��� j�t��
 = 2D0��t − t���ij1 . �3�

In Eq. �3�, the diffusion coefficient D0=kBT /�0 where kB is
Boltzmann’s constant and 1 is the unit tensor. Since the equa-
tion of motion allows for diffusive motion of the center of

mass, all the results will be presented relative to the center of
mass �i.e., momentary positions of all the particles are al-
ways relative to the momentary position of the center of
mass �12��. The results are presented in terms of reduced
units with �AA , �AA , �AA /kB, and �AA

2 �0 /�AA being the units
of length, energy, temperature, and time, respectively. Since
in these units the short-time self-diffusion coefficient is pro-
portional to the temperature, in the comparisons with the
mode-coupling theory the times are rescaled to t*= tD0 /�AA

2 .
The equations of motion Eq. �1� were solved using a

Heun algorithm with a small time step of 5�10−5. To save
disk space, not all the generated configurations were saved to
disk. Thus, the short-time dynamics are not available at the
lower temperatures. We simulated the temperatures T=0.44,
0.45, 0.47, 0.50, 0.55, 0.60, 0.80, 0.90, 1.0, 1.5, 2.0, 3.0, and
5.0. We ran equilibration runs and 4–6 production runs. The
equilibration runs were typically twice shorter than the pro-
duction runs, and the latter were up to 6�108 time steps
long for the lowest temperatures studied. The results pre-
sented are averages over the production runs.

III. MODE-COUPLING THEORY

The mode-coupling theory leads to a set of integro-
differential equations for the coherent intermediate scattering
functions �i.e., dynamic partial structure factors�,

S���q,t� = 		q�
��t�	−q�

� �0�
 �4�

where

	q
��t� =

1
�N�

�
i=1

N�

e−iq� ·r�i
��t�. �5�

Note that the sum in Eq. �5� is taken over particles of type �.
The structure factors depend only on the magnitude of the
wave vector �q� �=q. The time evolution of 	q�

��t� for a system
of interacting Brownian particles is governed by the adjoint
Smoluchowski operator �13�


 = D0�
�=1

2

�
i=1

N�

��� i
� − �F� i

�� · �� i
� �6�

where �=1/kBT and D0 is the short-time diffusion coeffi-
cient which is the same for both types of particles. We set
D0=1.0 for these calculations.

The mode-coupling equations governing the time evolu-
tion of the coherent intermediate scattering functions for
Brownian mixtures have been derived by Nägele et al. �14�:

�

�t
S�q,t� = − q2D0S−1�q�S�q,t� − �

0

t

du M�q,t − u�
�

�u
S�q,u�

�7�

where

S�q,t� = SAA�q,t� SAB�q,t�
SBA�q,t� SBB�q,t�

� �8�

is the matrix of coherent intermediate scattering functions,
and M is the matrix of memory functions,
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M���q� ,t� =
VD0

32�2�N�N�
�

l,l�,m,m�
� dk� V�lm�q� ,k��V�l�m��q� ,k��

� Smm���q� − k��,t�Sll��k,t� �9�

where the vortex

V�lm�q� ,k�� =
q� · k�

q
��mC�l�k� +

q� · �q� − k��
q

��lC�m��q� − k��� .

�10�

In Eq. �10� the matrix C�q� is defined through the Ornstein-
Zernike matrix equation

S−1�q� = 1 − C�q� , �11�

where 1 is the unit tensor. The mode-coupling theory equa-
tions allow one to calculate the time evolution of S���q , t�
with only the time-independent quantity S���q�=S���q ,0� as
an input.

The incoherent intermediate scattering functions

F�
s �q,t� = 	eiq� ·�r�i

��t�−r�i
��0��
 �12�

are calculated using as input the coherent intermediate scat-
tering function and the partial structure factors. Nägele et al.
�14� derived the equations governing the time evolution of
F�

s �q , t� for Brownian mixtures,

�

�t
F�

s �q,t� = − q2D0F�
s �q,t� − �

0

t

du M�
s �q,t − u�

�

�u
F�

s �q,u�

�13�

where the memory function

M�
s �q,t� =

D0V

�2��2N�
� dk�q� · k�

q
�2

F�
s ��q� − k���

� �
���

C���k�S����k,t�C����k� . �14�

For short times the integrals involving the memory func-
tion in Eqs. �7� and �13� are approximately zero; therefore

S�q,t� � exp�− q2D0S−1�q�t�S�q� , �15�

F�
s �q,t� � exp�− q2D0t� . �16�

In Eq. �16� we used F�
s �q ,0�=1.0.

According to Eqs. �15� and �16�, at short times the par-
ticles undergo diffusive motion with a diffusion coefficient
D0. The effect of the memory function is to provide a feed-
back mechanism which produces a “caging” of the particles.
For temperatures below the transition temperature Tc, there is
structural arrest and the particles do not escape their cage.
This results in a nonzero value of S�q , t� and F�

s �q , t� as t
→�. For temperatures close to but above Tc, there is a pla-
teau region in the log-log plot of the mean square displace-
ment and the log-linear plot of the intermediate scattering
functions. At long times the motion of the particles is again
diffusive with a temperature-dependent diffusion coefficient
DD0.

We calculate the input to the mode-coupling equations,
i.e., the partial static structure factors S���q�, directly from
the Brownian dynamics simulations. Because of the finite
size of the simulation box, the magnitude of the smallest
wave vector calculated is 2� /L, where L is the length of the
simulation box. We extrapolated S���q� to zero by fitting the
first few wave vectors to a polynomial. The method used to
calculate the integrals of the memory functions require that
the partial structure factors are known at equally spaced
wave vectors �see the Appendix for details on the numerical
procedure implemented in this work�. The structure factors
for these wave vectors were determined by fitting the partial
structure factors determined from the simulations to a cubic
spline.

To solve the mode-coupling equations, we used 300
equally spaced wave vectors from q=0 to 40 with the first
wave vector q0=0.2/3. We performed a few calculations
with larger cutoffs for the integral and/or a finer grid of wave
vectors. The difference in the values of the calculated inter-
mediate scattering functions was at most 5% and less in most
cases. This difference results in a less than 5% difference in
the self-diffusion coefficient and the incoherent intermediate
scattering function’s relaxation time.

The partial structure factors for temperatures which were
not directly simulated were calculated by a quadratic poly-
nomial interpolation between the points at three adjacent
temperatures. For most interpolated temperatures, it is pos-
sible to use two different sets of temperatures to determine
the structure factor at the interpolated temperature. Using
different temperature ranges changed the value of S�q , t� by
as much as 1%, but by less in most cases. At a few tempera-
tures we also used a linear interpolation between two adja-
cent temperatures or a cubic interpolation using the four
closest temperatures. The difference in the results were less
than 2% using these different interpolation schemes. We con-
clude that the results depends little on the interpolation
scheme.

First, we solved the mode-coupling equations for the co-
herent intermediate scattering functions until all the scatter-
ing functions decayed to zero or to a nonzero constant. Then
the coherent scattering functions and the structure factor
were used as the inputs for the calculation of the incoherent
scattering functions, which were solved for the same times as
for the coherent intermediate scattering functions.

Since the mode-coupling equations have to be solved for
many decades in time, specialized techniques have been de-
veloped. We describe the method used to solve the mode-
coupling equations in the Appendix. The algorithm was first
described by Fuchs et al. �15�, recently described in some
detail in Ref. �16�, and used and extended in Refs.
�6,7,9–11,16�. It is an iterative technique which calculates
the coherent and the incoherent scattering functions from t
= i�t where i� �N+1,… ,2N�, assuming that the scattering
functions are known for t= j�t where j� �1,… ,N�. Then the
time step �t�=2�t is doubled, and the values of the scatter-
ing functions for t= i�t� where i� �1,… ,N� are determined
from the values of the scattering functions for t= j�t where
j� �1,… ,2N�. We begin the calculation for an initial time
step of 10−8. For the first set of times, the scattering functions
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are not known. We used the approximation given by Eq. �15�
and �16� to supply the values of the coherent and the inco-
herent scattering functions for the initial N times. To check
this approximation, we also used a more time consuming
procedure to solve the mode-coupling equations for the ini-
tial N times. In this procedure, the integrals of the memory
function are included for t�10−8. The difference in all cal-
culated quantities was less than 0.5%.

IV. TRANSITION TEMPERATURE: MODE-COUPLING
THEORY VS SIMULATIONS

The mode-coupling theory predicts an ergodicity breaking
transition when S���q , t→���0 at some critical tempera-
ture Tc. To find the transition temperature we calculate
G�q�=limt→� S�q , t� as a function of temperature. We fol-
lowed the procedure used in previous calculations of the
nonergodicity parameter �4,8,17� to calculate G�q�. First, we
took the Laplace transform of Eq. �7� to get

�z + zM�q,z� + q2D0S−1�q��S�q,z� = S�q� + M�q,z�S�q�
�17�

where f�z� denotes the Laplace transform of f�t�, f�z�
=�0

�e−ztf�t�. To find the long-time limit of S�q , t� we utilized
the relationship limt→� f�t�=limz→0 zf�z� and derived an
equation for G�q�. This equation was then solved using the
following iterative procedure:

G�i+1��q� = �q2D01 + S�q�M�i��q��−1S�q�M�i��q�S�q� ,

�18�

where Mi�q� is calculated from Gi�q�. The nonergodicity pa-
rameters are defined as f��

c �q�=G���q� /S���q�. Using the
same method, we found the nonergodicity parameters for the
incoherent intermediate scattering functions, F�

s �q , t→��
= f�

s �q�. The iterative procedure for the nonergodicity param-
eter for the self-correlation functions is

f�
s�i+1�

1 − f�
s�i+1� =

M�
s�i�

q2D0
, �19�

where M�
s�i� depends on f�

s�i� and the solution to Eq. �18�, G��.
The inputs to Eq. �18� are the partial structure factors for

a temperature T. The iterative procedure was followed until
it was found that either G�q� is zero for all q or G�q� is
nonzero and does not change any longer for all q. If G�q� is
zero, then T�Tc otherwise T�Tc. By trying different struc-
ture factors for different temperatures the transition tempera-
ture can be determined to arbitrary precision. This method is
preferred to finding the transition temperature by calculating
the full time dependence of S�q , t�, since calculating G�q� is
around 20 times faster and reduces the calculation of the
nonergodicity parameter to hours instead of days. Once Tc
was found, we calculated the nonergodicity parameter by
solving the mode-coupling equations for S�q , t� and F�

s �q , t�
at Tc. The nonergodicity parameters found using the two
methods agree.

The nonergodicity parameters at Tc are plotted in Fig. 1
for the AA , AB, and BB correlators �solid lines�, and for the

incoherent intermediate scattering functions for the A and B
particles �dashed lines�. The results are similar to what was
obtained by Nauroth and Kob �8�. All the nonergodicity pa-
rameters are nonzero for q=0, but approach zero for large q.
The small features for q�5.0 for the AA nonergodicity pa-
rameters are numerical and do not represent additional fea-
tures in the nonergodicity parameter. The division of GAB�q�
by SAB�q� for the AB nonergodicity parameter causes numeri-
cal problems when SAB�q��0. This is seen as large spikes in
fAB

c . In the insert we show the input to Eq. �18�, SAB�q�
�dashed line�, and the results of the calculation GAB�q� �solid
line� at Tc. An extensive comparison of the mode-coupling
theory predictions to the simulation results for the nonergod-
icity parameters has already been conducted �8�, and we do
not repeat it here.

We determined a transition temperature Tc
theory=0.9515,

which is 3% higher than the ergodicity breaking temperature
Tc

theory,NK=0.922 determined by Nauroth and Kob �8�. Foffi et
al. �10� showed that small differences in the structure factor
can result in large differences in the critical packing fraction
for a binary system of hard spheres. They found that the
critical packing fraction was around 5% higher if the partial
structure factors were determined from the results of New-
tonian dynamics simulations instead of using the Percus-
Yevick approximation, even though there was little differ-
ence in the partial structures factors.

The transition temperature predicted by the theory is
around a factor of 2 larger than the commonly accepted
mode-coupling temperature inferred from simulations �5,8�
of the same system, Tc

sim=0.435. It should be emphasized
that, in contrast to the transition predicted by the mode-
coupling theory, only a crossover in the dynamics is ob-
served in simulations �5,18,19�. Furthermore, recently we ar-
gued that there is some arbitrariness regarding the mode-
coupling temperature inferred from simulations �19�. The
mode-coupling temperature is usually obtained by fitting the
simulation results for the characteristic decay time of the
intermediate scattering function and the diffusion coefficient
to a power law a�T−Tc��. The transition temperature ob-
tained in this manner depends on the temperature range used
in the fit. As argued in Ref. �19�, around the commonly ac-
cepted value of the mode-coupling temperature, Tc

sim=0.435,
the relaxation mechanism changes from high temperature
diffusive motion to low temperature hopping-like motion.

V. INCOHERENT INTERMEDIATE SCATTERING
FUNCTIONS

We calculate the time dependence of the coherent and the
incoherent intermediate scattering functions from the mode-
coupling equations with the partial structure factors deter-
mined from the simulations as input. In this section we com-
pare predictions of the mode-coupling theory with results of
Brownian dynamics simulations at the same reduced tem-
perature �= �T−Tc� /Tc. In Table I we list the reduced tem-
peratures �, the corresponding temperatures for the Brownian
dynamics simulations, and the temperatures which were used
in the mode-coupling theory calculations.
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Incoherent intermediate scattering functions for the A par-
ticles are shown in Figs. 2�a� and 2�b� calculated using the
mode-coupling theory and obtained from the Brownian dy-
namics simulations, respectively. Both figures show the in-
coherent intermediate scattering function at q=7.25, which is
around the first peak of SAA�q�. The scattering function for
the mode-coupling theory was calculated through a linear
interpolation of nearby scattering functions which were cal-
culated directly from the mode-coupling equations. The dot-
ted line in Fig. 2�a� is the mode-coupling results at Tc

theory

=0.9515. The dashed line in each figure shows the incoher-
ent scattering function for noninteracting particles, Eq. �16�.
The mode-coupling theory correctly predicts the two-step de-
cay of the intermediate scattering functions, and the plateau
observed in the log-linear plot of the scattering functions.

In Fig. 3�a� we compare the incoherent intermediate scat-
tering functions for �=3.5977, 0.8391, 0.0805, and 0.0115
for the A particles at q=7.25, and in Fig. 3�b� we show the
comparison for the same reduced temperatures for the B par-
ticles at q=5.75. At the higher reduced temperatures there is
very good agreement between the mode-coupling calcula-
tions and the Brownian dynamics simulations. For 0.0345
���0.8391 the characteristic decay time of the scattering
functions calculated from the mode-coupling theory is less
than that of the Brownian dynamics simulation. For reduced
temperatures equal to and below 0.0345, the mode-coupling
theory predicts a longer decay time for the self intermediate
scattering functions for this value of q. However, the shape
of the incoherent intermediate scattering functions are simi-
lar in the � relaxation region.

Kob, Nauroth, and Sciortino �9� compared the self-
intermediate-scattering functions obtained from Newtonian
dynamics simulations and predicted by the mode-coupling
theory. The input temperature in the mode-coupling theory
was adjusted so that the relaxation time of SAA�q , t� /SAA�q�
was correctly reproduced for one wave vector around the

TABLE I. The reduced temperatures and their corresponding
temperature in the Brownian dynamics �BD� simulations and the
mode-coupling theory �MCT� calculations.

� BD temperature MCT temperature

0.0000 0.435 0.9515

0.0115 0.44 0.9624

0.0345 0.45 0.9843

0.0805 0.47 1.0281

0.1495 0.50 1.0937

0.2644 0.55 1.2030

0.3793 0.60 1.3124

0.8391 0.80 1.7499

1.0690 0.90 1.9686

1.2989 1.00 2.1873

2.4483 1.50 3.2810

3.5977 2.00 4.3747

5.8966 3.00 6.5621a

10.494 5.00 10.937a

aMode-coupling equations were not solved for these temperatures.

FIG. 1. �a� Nonergodicity parameter at Tc for the A particles.
Solid line: coherent correlator, A-A particles. Dashed line: incoher-
ent correlator, A particles. �b� Nonergodicity parameter at Tc: coher-
ent correlator, A-B particles. �c� Dashed line: A-B partial structure
factor, SAB�q�. Solid line: GAB�q�=SAB�q ; t→�� at Tc. �d� Noner-
godicity parameter at Tc for the B particles. Solid line: coherent
correlator, B-B particles. Dashed line: incoherent correlator, B
particles.
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first peak of SAA�q�. The procedure followed by Kob et al.
requires that the characteristic decay time is the same in the
simulations and the mode-coupling theory calculations. Kob
et al. observed that the shape of the scattering functions and
its wave-vector-dependence are accurately described by the
theory for reduced temperatures above 0.071. We discuss the
wave-vector-dependence of the relaxation time in Sec. VIII.

The mode-coupling theory predicts power law divergence
of the characteristic decay time of the intermediate scattering
functions. Specifically, we define the � relaxation time as the
time when the incoherent intermediate scattering function
decays to e−1 of its initial value, F�

s �q ,���=e−1. In Fig. 4 we
show the � relaxation time for the A and B particles as a
function of reduced temperature. We fit the � relaxation time
to the function a��T−Tc� /Tc�−�. We fit the Brownian dynam-
ics results to reduced temperatures from 0.8391 to 0.1495,
which corresponds to the same reduced temperatures fit in an
earlier work �19�. We used this range of temperatures since
this is the temperature range in which a power law fits the �
relaxation time well for a transition temperature of 0.435.
For the mode-coupling theory calculations, we fit the power
law to reduced temperatures equal to and below 0.0345. The
exponents in the power law fits are given in the figure.

The exponents from the mode-coupling calculations are
close to but slightly larger than the exponents found from the
simulations. Note that the exponent obtained from solving

the mode-coupling equations for the single component hard
sphere system �7� is the same as the exponents predicted by
the mode coupling coupling theory for the binary Lennard-
Jones system. The exponents determined from simulations
are slightly different than the exponents reported in an earlier
work �19�, since we are fitting ��D0 here and we fitted �� in

FIG. 2. Incoherent intermediate scattering function for the A
particles for q=7.25 �a� predicted by the mode-coupling theory and
�b� calculated from the Brownian dynamics simulations. The scat-
tering functions are shown for the same reduced temperatures �
= �T−Tc� /Tc. The reduced temperatures are 3.5977, 2.4483, 1.2989,
1.0690, 0.8391, 0.3793, 0.2644, 0.1494, 0.0805, 0.0345, and 0.0115
listed from left to right. The dashed line in both figures corresponds
to the limit of noninteracting particles. The dotted line in �a� is the
incoherent intermediate scattering function calculated at Tc

theory.

FIG. 3. The incoherent intermediate scattering function for the A
and B particles predicted by the mode-coupling theory �dashed
lines� and calculated from the Brownian dynamics simulations
�solid lines� for �=3.598, 0.839, 0.0805, and 0.0115 listed from left
to right.

FIG. 4. The � relaxation time calculated from the Brownian
dynamics simulations �symbols� and predicted by the mode-
coupling theory �solid and dashed lines� for the the A and B par-
ticles. The A particles are represented by the closed symbols and the
solid line. The B particles are represented by the open symbols and
the dashed line. The lines nearly overlap. The dotted lines are fits of
the simulation data to the function a��T−Tc� /Tc�−�. The exponents
to the power law fits are given in the figure along with the expo-
nents to power law fits to the predictions of the mode-coupling
theory.
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the other work. We find, as other authors have also observed
�5�, that the exponents determined from the simulations are
different for the A and the B particles. However, this differ-
ence is within the 3% uncertainty in the exponents. Note that
the mode coupling theory predicts the same exponents for
the A and B particles, and the same exponents for the �
relaxation time and the self-diffusion coefficient.

Furthermore, the predictions of the mode-coupling theory
follow the asymptotic power law behavior for reduced tem-
peratures smaller than ��0.08. This is in contrast with the
results of simulations, which can only be fit to power laws in
a restricted range 0.1495���0.8391. On the other hand, it
has been observed in experiments that the power law behav-
ior of �� is valid for reduced temperatures up to 0.5 �20�.

VI. MEAN SQUARE DISPLACEMENT

To derive the mode-coupling theory predictions for the
mean square displacement we use the small q expansion of
the incoherent intermediate scattering function �23�,

F�
s �q,t� = �

n=0

�

�− 1�n q2n

�2n + 1�!
	�r�

2n�t�
 , �20�

where 	�r�
2n�t�
= 	�r�i

��t�−r�i
��0��2n
. Inserting Eq. �20� into the

equation for the incoherent intermediate scattering function
Eq. �13�, and expanding M�

s �q , t� in a Taylor series

M�
s �q,t� = M�

0�t� + q2M�
2�t� + q4M�

4�t� + ¯ �21�

results in the equation of motion

�

�t
	�r�

2�t�
 = 6D0 − �
0

t

du M�
0�t − u�

�

�u
	�r�

2�u�
 �22�

where

M�
0�t� = lim

q→0
M�

s �q,t�

=
D0V

6�2N�
�

0

�

dk k4F�
s �k,t��

���

C���k�S����k,t�C����k� .

�23�

This equation was solved using a variation of the procedure
described in the Appendix.

We present the mode-coupling theory predictions and
simulations results in Figs. 5�a� and 5�b�, respectively, for the
A particles. The results for the B particles are similar. The
solid lines correspond to the same reduced temperatures for
the mode-coupling calculations and the Brownian dynamics
simulations. The dotted line in Fig. 5�a� is the mean square
displacement at Tc

theory. The dashed line in both figures cor-
responds to motion in the limit of noninteracting particles,
i.e., a purely diffusive motion with a diffusion coefficient D0.
At all temperatures the short-time motion is diffusive with a
diffusion coefficient D0. For the mode-coupling theory cal-
culations, the short-time diffusion coefficient is 1, but the
short-time diffusion coefficient is temperature dependent in
the Brownian dynamics simulations. Note, however, that the
time axes are scaled to compensate for this difference.

The mode-coupling theory correctly predicts the existence
of the plateau region in the log-log plot of the mean square
displacement for temperature close to the transition tempera-
ture. The plateau represents a localization of the particles for
several decades in time and is associated with the cage ef-
fect. According to the mode-coupling theory, above the tran-
sition temperature the long-time motion is diffusive with a
self diffusion coefficient D�0. Also, at and below the mode-
coupling transition temperature, there is structural arrest and
D=0.

In Fig. 6 we show the mean square displacements for
reduced temperatures �=3.5977, 0.8391, 0.0805, and 0.0115
calculated using the mode-coupling theory �dashed lines� and
obtained from the Brownian dynamics simulations �solid
lines� for the A and B particles. The A particles are shown in
the upper figure and the B particles are shown in the lower
figure. The mean square displacement agrees reasonably well
with the predictions of the mode-coupling theory for reduced
temperatures equal to and above 0.0805 for both the A and B
particles at all times. However, for reduced temperatures be-
low 0.0805, the mean square displacement is not accurately
predicted by the mode-coupling theory.

For all reduced temperatures smaller than �=0.8391, there
is an obvious plateau in the Brownian dynamics simulations
and in the mode-coupling theory calculations. We define the

FIG. 5. Mean square displacement for the A particles �a� pre-
dicted by the mode-coupling theory and �b� calculated from the
Brownian dynamics simulations. The solid lines correspond to the
same reduced temperatures �= �T−Tc� /Tc in the mode-coupling
theory calculations and the Brownian dynamics simulations. The
reduced temperatures are 3.5977, 2.4483, 1.2989, 1.0690, 0.8391,
0.3793, 0.2644, 0.1494, 0.0805, 0.0345, and 0.0115 listed from left
to right. The dashed line corresponds to the limit of noninteracting
particles and the dotted line in �a� is the mean square displacement
calculated at Tc

theory.
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height of the plateau region as the inflection point in the
logarithm of the mean square displacement versus the loga-
rithm of time. At small reduced temperatures the height of
the plateau predicted by the theory agrees reasonably well
with that obtained from simulations, Fig. 7. In particular, at
�=0.0115, the plateau is predicted by the theory at a value of
the mean square displacement of around 0.028 for the A
particles and it occurs in the Brownian dynamics simulations
at around 0.029. For the B particles at �=0.0115, the plateau
is predicted by the theory to be around a value of 0.053 and
it is around 0.043 in the simulations. However, the tempera-

ture dependence of the plateau according to the theory and in
the simulations is very different. The theory predicts that the
plateau height as a function of reduced temperature is essen-
tially constant until around �=0.8391, and the plateau height
increases slightly with increasing temperature. The plateau
height calculated from the simulations increases with tem-
perature faster than predicted by the theory. For reduced tem-
peratures above 0.3793, it is difficult to calculate the inflec-
tion point for the Brownian dynamics simulations accurately.
Note that in the temperature range in which the theory gives
reasonably accurate predictions for the incoherent scattering
function and the mean square displacement, the plateau
height resulting from the theory is quite a bit smaller than
that obtained from simulations. For example, for �=0.3793
the mean square displacement at the inflection point pre-
dicted by the theory is around 0.024 and 0.053 for the A and
B particles, respectively, whereas in simulations it occurs
around 0.040 and 0.12 for the A and B particles, respectively.

We obtain the self-diffusion coefficient D from the slope
of the mean square displacement at long times, i.e., from D
=limt→�	�r�

2�t�
 / �6t�. Within the mode-coupling theory, we
can also calculate D from the equation

D

D0
=

1

1 + �
0

�

dt M�
0�t�

. �24�

Both procedures agree to within 1%. The diffusion coeffi-
cients predicted by the theory and obtained from Brownian
dynamics simulations are shown in Fig. 8 as a function of
reduced temperature. The mode-coupling theory provides a
good prediction for the diffusion coefficients for ��0.0805,
but the diffusion coefficients predicted by the theory are
slightly larger than the ones found from simulations. At
lower reduced temperatures the theory strongly underesti-
mates the diffusion coefficients. In addition, the theory does

FIG. 6. The mean square displacement for the A and B particles
predicted by the mode-coupling theory �dashed lines� and calcu-
lated from the Brownian dynamics simulations �solid lines�. The
reduced temperatures are �=3.5977, 0.839, 0.0805, and 0.0115
listed from left to right.

FIG. 7. Comparison of the plateau value of the mean square
displacement vs temperature. The symbols are the simulation results
and the lines are the predictions of the mode-coupling theory. The A
particles are represented by the closed symbols and the solid line,
and the B particles are represented by the open symbols and the
dashed line.

FIG. 8. The diffusion coefficient determined from the Brownian
dynamics simulation �symbols� and the mode-coupling theory
�solid and dashed lines�. The closed symbols and the solid line are
the results for the A particles. The open symbols and the dashed line
are the results for the B particles. The dotted line is a fit of the
simulation data to the function a��T−Tc� /Tc��. The exponents to the
power law fits are given in the figure along with the exponents to
power law fits to the predictions of the mode-coupling theory.
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not capture the increasing difference between the diffusion
coefficients of the A and the B particles.

We fit D /D0 to power laws of the form a��T−Tc� /Tc��;
the exponents are given in Fig. 8. For the mode-coupling
theory fit we use reduced temperatures less than 0.0345
whereas for the Brownian dynamics simulations we fit the
range 0.1495���0.8391. The exponents for the Brownian
dynamics simulations are slightly different than what has
been reported in an earlier work �19�, since we are fitting
D /D0 here and D there. The exponents predicted by the
mode-coupling theory are considerably larger than those ob-
tained from the fits to simulation results. Note that the expo-
nents for the diffusion coefficient calculated from the theory
is the same as the exponents found for the � relaxation time.
Moreover, the exponents found from the mode-coupling cal-
culations are the same for the A and the B particles.

The reduced temperatures in which it is possible to fit the
mode-coupling results well with a power law is similar to
what was found for the � relaxation time, i.e., that the power
law provides a good fit up to a reduced temperature of
around 0.08.

We would like to point out that power laws fit the predic-
tions of the mode-coupling theory reasonably well for the
same reduced temperatures in which we fit power laws to the
results of the Brownian dynamics simulations. If we fit the
predictions of the mode-coupling theory to power laws using
the range 0.1495���0.8391, the resulting exponents are
different from the true exponents �i.e., from the exponents
describing the the true asymptotic power law behavior� but
they differ by at most 12% from the exponents obtained from
the Brownian dynamics simulations. This should be com-
pared with the 48% difference between the true mode-
coupling theory exponent and the exponent for the B par-
ticles obtained from the Brownian dynamics simulations
using the range 0.1495���0.8391.

Finally, in Fig. 9 we compare the temperature dependence
of the product of the diffusion coefficient and the � relax-
ation time predicted by the mode-coupling theory and ob-
tained from simulations. In the high temperature regime one

usually expects that the Stokes-Einstein relation is valid and
D�� is temperature independent. The decoupling of the dif-
fusion and structural relaxation has been identified as one of
the signatures of increasingly heterogeneous dynamics �21�.
The mode-coupling theory predicts an essentially
temperature-independent D��. In contrast, simulations show
that the product of the diffusion coefficient and the � relax-
ation time starts increasing with temperature below approxi-
mately �=1. Note that this value of the reduced temperature
corresponds to a temperature that is close to the so-called
onset temperature identified for the Kob-Andersen model by
Brumer and Reichman �22�.

VII. NON-GAUSSIAN PARAMETER

At short and long times, the motion of the particles is
Fickian and the self-part of the van Hove correlation function
is Gaussian. For intermediate times, the van Hove correlation
function deviates from Gaussian. To examine the non-
Gaussian nature of the van Hove correlation function, we
calculated the non-Gaussian parameter

�2�t� =
3

5

	�r�
4�t�


	�r�
2�t�
2 − 1. �25�

For the calculation of �2�t�, we first calculated the mean
square displacement �see Sec. VI� and then we calculated
	�r�

4�t�
. The equation of motion for 	�r�
4�t�
 is derived using

the same method as the equation for 	�r�
2�t�
. The resulting

equation of motion is

�

�t
	�r�

4�t�
 = 20D0	�r�
2�t�
 − �

0

t

du M�
0�t − u�

�

�u
	�r�

4�u�


+ 10�
0

t

du M�
2�t − u�

�

�u
	�r�

2�u�
 �26�

where

M�
2�t� =

VD0
2

10�2N�
� dk k4 2

3k

�

�k
F�

s �k,t� +
�2

�k2F�
s �k,t��

� �
���

C���k�S����k,t�C����k� . �27�

In principle, it is also possible to calculate the non-Gaussian
parameter by fitting F�

s �q , t� in the small wave vector limit
�23�. We found that this procedure was difficult to follow
using the structure factors calculated from simulations, and
small numerical uncertainties in the small q values of F�

s can
result in large changes in the non-Gaussian parameter. For
short times, the integrals involving memory functions in Eqs.
�22� and �26� are close to zero. Thus, for short times
	�r2�t�
�6D0t and 	�r4�t�
�60D0

2t2; therefore �2�t��0. At
long times, the motion is once again Fickian, the self-part of
the van Hove correlation function is Gaussian, and �2�t�=0.
In our calculations, �2�t� does not go to zero at long times,
but rather to a value around 5�10−3. We believe that this
result can be attributed to numerical errors; it does not imply
that �2�t� is nonzero for t→�.

FIG. 9. Product of the diffusion coefficient and the � relaxation
time determined from the Brownian dynamics simulation �symbols�
and the mode-coupling theory �solid and dashed lines�. The closed
symbols and the solid line are the results for the A particles. The
open symbols and the dashed line are the results for the B particles.
Note that for clarity we omitted the error bars for the lowest tem-
perature point ��=0.0115� for the A particles; at the lowest tempera-
ture for the A particles. D��=0.0585±0.054.
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We show the non-Gaussian parameters for the A particles
in Fig. 10. The upper panel shows the predictions of the
mode-coupling theory and the lower panel shows the results
of the Brownian dynamics simulations. According to the
mode-coupling calculations, there is one peak at high re-
duced temperatures, but for ��1.2989 there are two peaks.
Two peaks have been observed before in mode-coupling cal-
culations of �2�t� for other systems �23�. The first peak is
around the beginning of the plateau region of the mean
square displacement and the initial decay of the scattering
functions. The position of the first peak decreases for de-
creasing temperature, but is almost constant for ��0.8391.
The second peak is around the � relaxation time which cor-
responds to just after the plateau region of the mean square
displacement. The position of the second peak increases with
decreasing temperature and roughly follows the temperature
dependence of the � relaxation time �Fig. 12�a� below�.

There is only one peak in �2�t� according to the Brownian
dynamics simulations, Fig. 10�b�. The position of this peak is
greater than the � relaxation time at higher temperatures, but
it increases slower with decreasing temperature than the �
relaxation time starting at around �=0.8391.

The mode-coupling theory predicts one peak at all tem-
perature for the B particles. However, there is a prominent

shoulder for ��1.2989, the same reduced temperatures in
which there are two peaks in the non-Gaussian parameter for
the A particles. The position of the shoulder follows the same
temperature dependence as the position of the first peak in
the non-Gaussian parameter for the A particles. The peak
position in �2�t� predicted by the mode-coupling theory is
less than the � relaxation time at all temperatures, and it
increases with decreasing temperature at close to the same
rate as the � relaxation time �Fig. 12�b� below�.

The non-Gaussian parameter for the B particles obtained
from the Brownian dynamics simulation is shown in Fig.
11�b�. There is only one peak for all temperatures. The posi-
tion of the peak is greater than the � relaxation time for
higher temperatures, but the position increases slower with
decreasing temperature than the � relaxation time and is
much less than the � relaxation time at small reduced tem-
peratures, Fig. 12�b�.

To summarize, the time dependence of the non-Gaussian
parameter calculated using the mode-coupling theory is sig-
nificantly different from what is obtained from the Brownian
dynamics simulations. More importantly, the mode-coupling
theory strongly underestimates the deviations from Gaussian
�i.e., Fickian� diffusive motion: the heights of non-Gaussian
parameters predicted by the theory are almost an order of
magnitude smaller than those obtained from the Brownian
dynamics simulations. We show in the next section that the
simulations show even stronger non-Gaussian effects on
somewhat longer time scales.

FIG. 10. The non-Gaussian parameter for the A particles �a�
predicted by the mode-coupling theory and �b� calculated using the
Brownian dynamics simulations. The reduced temperatures �= �T
−Tc� /Tc are 3.5977, 2.4483, 1.2989, 1.0690, 0.8391, 0.3793,
0.2644, 0.1494, 0.0805, 0.0345, and 0.0115. In �a�, there is one
peak for �=3.5977, and a wider single peak for 2.4483 �dashed
lines�. For all the other reduced temperatures there are two peaks,
and the larger peak position of the second peak corresponds to a
lower reduced temperature. In �b�, the larger peak heights corre-
spond to lower reduced temperatures.

FIG. 11. The non-Gaussian parameter for the B particles �a�
predicted by the mode-coupling theory and �b� calculated from the
Brownian dynamics simulations. The reduced temperatures �= �T
−Tc� /Tc are 3.5977, 2.4483, 1.2989, 1.0690, 0.8391, 0.3793,
0.2644, 0.1494, 0.0805, 0.0345, and 0.0115 where the lower re-
duced temperatures correspond to larger peak heights.
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VIII. PROBABILITY DISTRIBUTIONS OF THE
LOGARITHM OF SINGLE PARTICLE DISPLACEMENTS

In an earlier work �19�, we showed that as the temperature
Tc

sim=0.435 is approached, the motion of the particles
changes from a high temperature diffusive-like behavior to a
low temperature hopping-like motion. To this end, we inves-
tigated probability distributions of the logarithm of single
particle displacements �24,25�. The probability distribution
of the logarithm of single particle displacements at a time t,
P(log10��r� ; t), can be obtained from the self van Hove cor-
relation function, Gs��r , t�= 	�(�r�i

��t�−r�i
��0��−�r)
, by the

transformation P(log10��r� ; t)=ln�10�4��r3Gs��r , t�. Note
that if the motion of a tagged particle is diffusive at all times
with a diffusion coefficient D, then the self van Hove corre-
lation function Gs��r , t�= �1/ �4�Dt�3/2�exp�−�r2 /4Dt� and it
can be shown that the shape of the probability distribution
P(log10��r� ; t) is time independent. In particular, the peak
height of P(log10��r� ; t) does not depend time and is equal to
ln�10��54/�e−3/2�2.13. Thus, deviations from this height
represent deviations from Gaussian behavior of Gs��r , t�.

We show a comparison of P(log10��r� ; t) in Fig. 13 for the
A and B particles calculated from the simulations �solid
lines� and from the mode-coupling theory �dotted lines� for
the reduced temperature �=0.8391 for several different
times: 0.25�� ,1.0�� , 5.0��, and 10.0��. It should be noted
that in Figs. 13 and 14 we use the A and the B particles �
relaxation times in panels �a� and �b�, respectively; more-

over, we use the � relaxation times obtained from simula-
tions for the simulation results and the � relaxation times
predicted by the mode-coupling theory for the theoretical
results. At this temperature the mode-coupling theory de-
scribes the probability distributions reasonably well.

In Fig. 14 we show a comparison of P(log10��r� ; t) for the
A and B particles calculated from the simulations �solid
lines� and from the mode-coupling theory �dotted lines� for
several different times at a reduced temperature of �
=0.0115 �recall that, as in Fig. 13, we use the A and the B
particle � relaxation times in panels �a� and �b�, respectively;
moreover we use the � relaxation times obtained from simu-
lations for the simulation results and the � relaxation times
predicted by the mode-coupling theory for the theoretical
results�. This is the lowest reduced temperature at which we
can directly compare the predictions of the mode-coupling
theory to the simulation results. There is a dramatic differ-
ence in the shape of the curves over the time interval shown
in the figure. At intermediate times bimodal distributions are
obtained from Brownian dynamics simulations whereas the
mode-coupling theory predicts unimodal distributions at all
times. The bimodal distributions suggests that a portion of
the particles are undergoing hopping-like motion with a large
distribution of hopping rates. This hopping-like motion is not
predicted by the mode-coupling theory.

In an earlier work �19�, we observed in the simulations
that the time in which both peaks are about equal height is

FIG. 12. The peak position of the non-Gaussian parameter com-
pared to the � relaxation time. The symbols are the simulation
results and the lines are the predictions of the mode-coupling
theory. The open symbols and dashed lines are the � relaxation
time. The closed symbols and the solid lines are the peak positions
of the non-Gaussian parameter.

FIG. 13. The probability distribution of the logarithm of single
particle displacements predicted by the mode-coupling theory �dot-
ted lines� compared to the probability distributions calculated from
the Brownian dynamics simulations �solid lines� for �=0.8391. �a�
A and �b� B particles. The times shown are 0.25, 1.0, 10, and 20
times the � relaxation time; note that we use the A-particle and the
B-particle � relaxation times in �a� and �b�, respectively.
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longer than the time indicated by the peak position of the
non-Gaussian parameter �2�t�. We defined a new parameter
��t�= 1

3 	�r2
	1/�r2
−1 whose peak position occurs at the
same time as when the two peaks in P(log10��r� ; t) are ap-
proximately the same height for temperatures in which there
are two peaks. It was found that the peak position of ��t� has
the same temperature dependence as the � relaxation time.

At temperatures in which we see evidence of the hopping-
like motion when we examine the probability distribution
P(log10��r� ; t), the wave-vector-dependent � relaxation time
is qualitatively different in the simulation than predicted by
mode-coupling theory.

In Fig. 15 we show Dq2���q�, where ���q� is the wave-
vector-dependent � relaxation time defined as the time when
F�

s (q ,���q�)=e−1. The lines are the predictions of the mode-
coupling theory and the circles are the results of the Brown-
ian dynamics simulations. For small wave vectors, the prod-
uct Dq2���q� is 1. For the reduced temperature of �
=0.8391, Fig. 15�a�, ���q�−1=Dq2 until q�5. At larger wave
vectors there is a crossover from the small wave vector rela-
tionship to the large wave vector limit ���q�−1=D0q2 �this
large wave vector limit follows from the fact that memory
functions vanish in the large wave vector limit�.

In contrast, for lower reduced temperatures, there is a
qualitative difference between the wave-vector-dependent �
relaxation time predicted by the theory and calculated from

the Brownian dynamics simulations. In Fig. 15�b� we show
the product Dq2���q� for the reduced temperature �
=0.0115. At small wave vectors the simulation results ap-
proach the asymptotic behavior ���q�−1=Dq2. At intermedi-
ate wave vectors, 1.5�q�7.5, the values of Dq2���q� cal-
culated from the simulation increase with a peak somewhere
between 6.5�q�7.5. At large wave vectors, the � relax-
ation time reaches its limiting behavior ���q�−1=D0q2. On
the other hand, the mode-coupling theory predicts a mono-
tonically decaying Dq2���q� with essentially the same be-
havior at low and high reduced temperatures, Fig. 15.

We should point out that the increase of Dq2���q� with
wave vector for intermediate wave vectors was previously
found in the Kob-Andersen system by Berthier �26�. Also,
the increase of Dq2���q� has been predicted within the the-
oretical approach of Schweizer and Saltzman �27�. Finally,
Berthier, Chandler, and Garrahan found a similar behavior in
one-dimensional facilitated kinetic Ising models �28�. Here
we emphasize that this behavior correlates with strong devia-
tions from Fickian diffusion visible in the probability distri-
bution P(log10��r� ; t).

IX. CONCLUSIONS

We have conducted an extensive comparison of the pre-
dictions of the mode-coupling theory to Brownian dynamics
simulations. As has been previously observed, qualitatively,
predictions of the mode-coupling theory agree well with

FIG. 14. The probability distribution of the logarithm of single
particle displacements predicted by the mode-coupling theory �dot-
ted lines� compared to the probability distributions calculated from
the Brownian dynamics simulations �solid lines� for �=0.0115. �a�
A and �b� B particles. The times shown are 0.1, 1, 2.5, 5, and 10
times the � relaxation time; note that we use the A-particle and the
B-particle � relaxation times in �a� and �b�, respectively.

FIG. 15. The product Dq2���q� for �=0.8391 and 0.0115. The
symbols are the results of the Brownian dynamics simulations and
the lines are the predictions of the mode-coupling theory. The A
particles are represented by the closed symbols and the solid lines,
and the B particles are represented by the open symbols and the
dashed lines.
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simulations; namely, the mode-coupling theory accurately
predicts the two-step relaxation observed in the scattering
functions, the existence of the plateau region observed in the
mean square displacement, and the power law behavior of
the self-diffusion coefficient and the � relaxation time.

The mode-coupling theory overestimates the feedback
mechanism in the memory functions, resulting in a transition
temperature Tc

theory=0.9515 much greater than the tempera-
ture Tc

sim=0.435 inferred from simulations. The transition
temperature found in simulations is determined by fitting the
diffusion coefficient and the � relaxation time to power laws.
It should be noted that this temperature is sensitive to the
range of temperatures used in the power law fits �19�. While
the transition temperatures are vastly different, we find that
the mode-coupling theory gives good quantitative results of
many time-dependent quantities if they are compared at the
same reduced temperature �= �T−Tc� /Tc.

The self-intermediate-scattering functions and the mean
square displacement resulting from simulations are well de-
scribed by the mode-coupling theory for reduced tempera-
tures greater than 0.08. For temperatures close to Tc the
mode-coupling theory predicts divergence of the self-
intermediate-scattering function’s relaxation time and van-
ishing of the self-diffusion coefficient. There is no diver-
gence of the relaxation time or vanishing of the self-diffusion
coefficient in the Brownian dynamics simulations.

The non-Gaussian parameter calculated from the simula-
tions are quite different than the non-Gaussian parameter
predicted by the mode-coupling theory. The mode-coupling
theory predicts two peaks in �2�t� for reduced temperatures
��1.2989 for the A particles, and a shoulder at short times
and a peak at longer times for the B particles. There is only
one peak in the non-Gaussian parameter calculated from the
simulation for all temperatures for both the A and B particles.
Furthermore, the position of the second peak for the A par-
ticles and the only peak for the B particles predicted by the
mode-coupling theory has a different temperature depen-
dence from the position of the peak observed in the Brown-
ian dynamics simulations. The mode-coupling theory pre-
dicts that the position of the second peak roughly follows the
� relaxation time close to Tc, while the position of the peak
for the Brownian dynamics simulations increases slower
with decreasing temperature than the � relaxation time. Fi-
nally, the theory underestimates the height of the non-
Gaussian parameter peak by almost an order of magnitude.

We calculated the probability of the logarithm of single
particle displacements P(log10��r� ; t) which is sensitive to
hopping-like motion. At high reduced temperatures, there is
no hopping-like motion evident in the Brownian dynamics
simulations and P(log10��r� ; t) is accurately described by the
mode-coupling theory. For low reduced temperatures, there
is little agreement between the mode-coupling theory and the
simulations. At the lowest reduced temperature studied in
this work, �=0.0115, the hopping-like motion is very evident
in the Brownian dynamics simulations, but is not predicted
by the mode-coupling theory. We believe that this hopping-
like motion is responsible for the absence of the divergence
of the relaxation time or vanishing of the self-diffusion co-
efficient in the simulations.

For low reduced temperatures, the mode-coupling theory
does not predict the proper wave-vector-dependence of the �
relaxation time. The theory predicts that at all temperatures
the product Dq2��q� is 1 for small wave vectors and it de-
creases monotonically with increasing wave vector. In con-
trast, at low temperatures Brownian dynamics simulations
show a peak in the product Dq2��q�.

To summarize, we found that close but not too close to the
transition temperature the mode-coupling theory does predict
most time-dependent quantities reasonably well. At very
small reduced temperatures there is a hopping-like motion
present in the simulations which is not accounted for by the
standard version of the mode-coupling theory. Signatures of
the hopping-like motion include the two-peak structure of
the probability of the logarithm of particle displacements and
nontrivial wave-vector-dependence of the � relaxation time.
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APPENDIX: NUMERICAL ROUTINES

In this section we will outline the numerical routines that
were used to solve many of the equations given in this paper.
Since the time-dependent quantities were solved over many
decades in time, it is not possible to solve these equations
using normal Gaussian quadrature, and special algorithms
must be implemented. While these techniques have been out-
lined in the literature previously �15,16�, we describe our
independent implementation in more detail; for error esti-
mates and further discussion see Ref. �29�. In this appendix
we will describe numerical routines used to calculate inte-
grals of the form

� dk� F��q� − k���G�k� �A1�

when F�k� and G�k� are only known on a grid of equally
spaced wave vectors and and how to solve equations of the
form

Ḟq�t� = aFq�t� + �
0

t

du Mq�Fq,t − u�Ḟq�u� �A2�

for many decades in time. The overdot denotes a derivative
with respect to time. It is important to note that the function
Mq depends not only on time t, but also on the functions
Fq�t�.

The integrals of the memory function in the mode-
coupling theory are all of the form given by Eq. �A1�. To
calculate the integral, the functions are generally only known
on a grid of equally spaced wave vectors. Furthermore the
calculation of these integrals are the most computationally
expensive part of the program, and extrapolation between
grid points can increase the calculation time significantly.
The first step is to introduce the change of variables p� =k�
−q� /2, then convert to spherical polar coordinates. This al-
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lows integration over one angular variable and the integral
becomes

2�� p2sin � dpd� F�p� −
q�

2
��G�p� +

q�

2
�� . �A3�

Then make another change of variables to

x = �p� +
q�

2
� = �p2 + q2/4 + pq cos � , �A4�

y = �p� −
q�

2
� = �p2 + q2/4 − pq cos � , �A5�

which results in the integral

2�

q
�

0

�

x dx�
�x−q�

x+q

y dy F�y�G�x� �A6�

which can easily be calculated numerically using any num-
ber of quadrature techniques. There is one technical issue in
using Eq. �A6�. As q→0 the integral over y goes to zero, but
the integral itself does not go to zero �see e.g., Eq. �23��.
While the effect is negligible for larger wave vectors, for
small q it is better to expand Eq. �A1� in a Taylor series
around q=0. We found that this had to be done to obtain
accurate small q values of various quantities, e.g., the non-
ergodicity parameter. In this work the Taylor series approxi-
mation was always used to calculate the integrals of the
memory functions for the two smallest wave vectors.

Most of the equations solved in this paper have the form
given by Eq. �A2� and they must be solved for many decades
in time. The basic algorithm is as follows. First an arbitrary
time interval �t is broken into 4N equal segments of size
�t=�t /4N. It is assumed that the value of Fq�t� for the first
2N segments is known. For each future time an equation of
the form

Fq�t� = aH�Fq,t� + b �A7�

is solved. When Fq�ti� has been calculated for all 4N times
the time interval �t�=2�t is doubled. The new time integral
in divided into 4N equal segments of size �t�=2�t. Since
F�t� has been calculated up to �t� /2, a mapping of �Fq�ti��
→ �Fq�tj�� can be defined where ti= i�t and tj = j�t� and thus
we know Fq�t� for the first 2N segments of the new time
interval, and the procedure is repeated.

First we will describe how to convert Eq. �A2� into an
equation of the form �A7�. Break the integral in Eq. �A2� into
two integrals; then integrate the integral starting at t=0 by
parts to get

�
0

t

du Mq�t − u�Ḟq�u� = Mq�t − t2�Fq�t2� − Mq�t�Fq�0�

− �
0

t2

du Ṁq�t − u�Fq�u�

+ �
t2

t

du Mq�t − u�Ḟq�u� . �A8�

Next make a change of variables in the second integral in Eq.
�A8� to �= t−u and break both integrals in Eq. �A8� into
integrals of length �t. This results in the following exact
form of the integral in Eq. �A8�:

Mq�t − t2�Fq�t2� − Mq�t�Fq�0� − �
j=1

n1 �
tj−1

tj

du Ṁq�t − u�Fq�u�

− �
j=1

n2 �
tj−1

tj

du Mq�u�Ḟq�t − u� . �A9�

Use the approximation that

�
tj−1

tj

du Ȧ�u�B�u� � �A�tj� − A�tj−1��
1

�t
�

tj−1

tj

du B�u�

� �A�tj� − A�tj−1��I�B�tj�� �A10�

where I�B�tj��= �1/2��B�tj−1�+B�tj��. We approximate Ḟq�ti�
by

Ḟq�t� �
1

2�t
Fq�ti−2� −

2

�t
Fq�ti−1� +

3

2�t
Fq�ti� , �A11�

but other approximations for the derivative can be used. Put
all this together to get the equation

C1Fq�ti� = C2Mq�ti� + C3 �A12�

where

C1 =
3

2�t
− I�Mq�t1�� − a ,

C2 = I�Fq�t1�� − Fq�0� ,

C3 =
2

�t
Fq�ti−1� −

1

2�t
Fq�ti−2�

+ Mq�ti−i2�Fq�ti2� − Mq�ti−1�I�Fq�t1��

− Fq�ti−1�I�Mq�t1��

− �
j=2

i2

�Mq�ti−j� − Mq�ti−j+1��I�Fq�tj��

− �
j=2

i−i2

�Fq�ti−j� − Fq�ti−j+1��I�Mq�tj�� �A13�

and ti2 is the time where the integral in Eq. �A8� is broken
into two parts. Equation �A12� can be easily recast into the
form of Eq. �A7�. Recall that Mq�ti� depends on Fq�ti�. Equa-
tion �A7� can be solved using any number of techniques used
to find a fixed point of a set of equations. There is one equa-
tion of the form �A7� for every q vector, and Mq�ti� depends
on each Fq�ti�.

It remains to describe the mapping from �t to �t�=2�t.
For 1� j�2N,
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Fq�t2j� → Fq�tj� , �A14�

Mq�t2j� → Mq�tj� . �A15�

For 1� j�N,

0.5�I�Fq�t2j�� + I�Fq�t2j−1��� → I�Fq�tj�� , �A16�

0.5�I�Mq�t2j�� + I�Mq�t2j−1��� → I�Mq�tj�� . �A17�

For N+1� j�2N

1

6
�Fq�t2j� + 4Fq�t2j−1� + Fq�t2j−2�� → I�Fq�tj�� , �A18�

1

6
�Mq�t2j� + 4Mq�t2j−1� + Mq�t2j−2�� → I�Mq�tj�� .

�A19�

Now there are values for F ,M ,I�F� ,I�M� from 0� t
��t� /2 and they can be calculated for �t� /2� t��t�.
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